If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-60t+600=0
a = 1; b = -60; c = +600;
Δ = b2-4ac
Δ = -602-4·1·600
Δ = 1200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1200}=\sqrt{400*3}=\sqrt{400}*\sqrt{3}=20\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-20\sqrt{3}}{2*1}=\frac{60-20\sqrt{3}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+20\sqrt{3}}{2*1}=\frac{60+20\sqrt{3}}{2} $
| 5x-8+7x-12=10x-2 | | 8(x-3)+8=5x=22 | | 13y^2+21y=-5y^2+22 | | (8-4x)=40 | | f(4)=1/5^4 | | 13y^+21y=-5y^2+22 | | 810=24x+45 | | 135=-3(-5x-5) | | 1d+4=6d=3 | | t^2-48t+480=0 | | (X-5)-2=-2x | | 8x+7-3x=-13 | | 2(4-2r(=-2(r+5) | | 3(n+4)=0.5(6n-4) | | -6/7x=-37.2 | | X-11x-3=10x-1-2 | | 2x+9=3x+24 | | -2=-2(x+3) | | -6/7x=37.2 | | -6/7x=37/2 | | 3x-2(-2x-3)=2 | | 2/5n-2=-4 | | 3x-20=55 | | 20z-5-12z=10z+18 | | 4(2+x)+1=0.6x-2.1 | | 5^x=2x+1 | | 19-3z=9-12 | | 7.4s=20.4 | | 10x-13=2x+3 | | n+n5+7=43 | | x+(1/3)x=16 | | 25=15-2/5b |